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Lecture 4
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Plan for lecture 4

o Target trials (briefly)

@ Structural Equation Models
o Causal graphs
o Bayesian networks
Link to structural equations
D-separation
Examples
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Section 13

Target trial
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The target trial

@ We have argued that contrast between average counterfactual
outcomes under different treatments are often of substantial interest.

@ We have also clarified that conducting an experiment guarantees
identification of a causal effect. However, conducting an experiment
is not always feasible.

@ For each causal effect of interest, we can conceptualize a
(hypothetical) randomised experiment to quantify it. This
hypothetical randomised experiment is called the target experiment
or target trial.

@ Being explicit about specifying the target trial forces us to be explicit
about the causal question of interest. We ask the question: “What
randomised experiment are you trying to emulate?”
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Specification of the target trial

To make a causal question practically interesting and useful, it is
important to clarify the following, which is part of the specification of the
target trial:

e Target population (eligibility criteria).
@ Interventions (the treatment strategies).

@ Outcome (what is the outcome and when will the outcome be
measured)
e Statistical analysis (application of estimators and their statistical
properties).
Also clarifies how the claims made can be falsified in the future (in

principle), by conducting the target trial. This fits with a positivist
(Popperian) view of science.
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@ You have seen that conditional dependencies are hard to interpret.
o Death penalty example
o GRE example (you will see this again today)

@ We have also seen that (average) causal effects are identified by
design in experiments, but also can be identified under assumptions
(exchangeability, consistency and positivity) in an observational study.
However, reasoning about counterfactual (in)dependencies is at least
as hard as observed (in)dependencies.

@ We will now introduce graphs to clarify when:

© Observed (in)dependencies can be interpreted causally.
@ Counterfactual independencies are plausible, which can allow
identification of causal effects.

@ Importantly, graphs allow us to study much more complex and
realistic settings than those we have considered so far.
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Section 14

Structural equations
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Structural equation model

Definition

A structural equation model (SEM) is a model that describes how values
are assigned to each variable in a system

Think about nature (God) assigning values to each variable in the system.
This describes a generative story of how the data came to be. Or think
about each equation representing a physical mechanism that determines
the value of the variable on the left (output) from values of the variable on
the right (inputs)
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We motivate structural equation models (SEMs) with an

example (more general theory follows in later slides)

Consider
L=1f(UL)
A= fA(La UA)
Y =fy(A L Uy) = ya=Al=L _ Z I(A=a,L=1) yal (1)

a,l

Here U, Ua, Uy are external unmeasured factors that are mutually
independent. Here, the generative story is as follows:
@ The value of L is determined as a function of the value of U, as given
by the function f;.
@ The value of A is determined as a function of the value of L, Uy as
given by the function f4.
@ The value of Y is determined as a function of the value of L, A, Uy as
given by the function fy.
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We will accompany the structural equations with a picture

Structural equation models are typically accompanied with a corresponding
picture known as a path diagram (as above): that is, a graph which makes
explicit the directionality of the underlying process.

For a more compact representation, unmeasured factors that do not
determine two or more variables in the system can be left out of the graph
(I will repeat this point in later slides, and make the notion more formal).
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SEM example (continued)

Consider the SEM M

L="f(Up)
A= fa(L, Un)
Y = fy(A, L, Uy) (2)
and the graph G,
L > A > Y

\/

How does M induce an observed data distribution over
P(L=1,A=a,Y = y) and can this distribution be fully described in
some way by simply looking at the graph G7

And how about the distributions under interventions on A, that is,
P(L=1,A=a,Y?=y)?
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Section 15

Graphs
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What is a graph?

Definition (Graph)
A graph G is a collection of
o Nodes (vertices), V = {Vq, Vo, -, Vn}.
o Edges (V;V;) connecting some of the vertices.

We write (V;V;) to denote an edge that connects V; and V;.
A path is a sequence of edges of the form
(W1, V), (Va, V3), -+, (Vi—1, Vi),
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What is a directed graph?

Definition (Directed Graph)

A directed graph is a graph with a set of nodes and arrows connecting
some of the nodes. A graph G is a collection of

o Nodes (vertices) V = {Vq, Vo, -, Vi }.

o Directed edges connecting some of the nodes.

We write (V; V) to denote a directed edge from V; to V;.

It is directed, because the graphs A directed path is a sequence of edges
of the form

(V1 V2) 5, (V2, V3) o (Vike1, Vi) ),

A directed graph has a cycle if there exists a path

<(V17 V2)~>a (V27 V3)~>7 e 7(Vk—17 Vk)—)a (Vka Vl)%>

A Directed Acyclic Graph is a directed graph with no cycles.

PS: Now the subscript does not longer indicate an individual. V4 is now a random

variable. From now on, | will use Vi(w) when | talk about the value for a particular
individual.
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Basic definitions

In a DAG G we define the following sets (parents, children, ancestors and
descendants):

o pac (Vi) ={Vi: V; = V; exists in G}.
o chg(V)) ={V;: V; = V; exists in G}.
@ ang(Vi)={Vi: Vi > V,— - =V, = Vexists in G} U V.
@ deg(Vi)={V,: V=V, = --- =V, = V; exists in G}.
Further terminology:

@ A path where V, — V; < V), is called a collider path, and here V; is a
collider.

@ A path where V, < V; — V, is called a fork.
@ A path is blocked if it contains a collider. Otherwise it is open.

@ A DAG is complete if there is an arrow between every pair of nodes.
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Topological order with respect to a graph

Definition (Topological order of a DAG)

The nodes Vi, V5, ... follow a topological order relative to a DAG G, if V;
is not ancestor of V; whenever j > i.

Note that topological orders are not necessarily unique, but in the DAG in
Figure 129 the only possible topological order is (L, A, Y).
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Some preliminaries

Consider a study population .
Let w be an element (i.e. unit or individual) in Q.

Note that we used subscript i to denote an individual in the first lecture, but
now the subscript just indicates a particular random variable, and we write
Vi(w) when we consider the value for individual w.

Consider a discrete random variable V;.
Let Vj(w) be the value of V; in w.
Let G be a DAG with nodes V = {V4, V5,--- |V, }.

We use overlines to denote histories of variables, e.g.
VjE(Vl,Vz,...,Vj) EVI X Vo X+ X V.

Let PAc ={V;: V; € pag(Vi) }. A random vector

@ Let pay = {v;j: V; € pag(Vk) } for a

V=(vi,Va,. ., Vm) € V1 X Vo X -+ X Vp, A realisation of PA.

From now on | will use p(v; | vj) to denote conditional densities
P(Vi=vi| Vi = v).
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Section 16

The next slides on Non-Parametric Structural

Equation Models give some more details
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Non-parametric structural equation model (NSPEM) with

respect to a DAG

There exist unknown functions fi, ..., f, such that the observed
("factual”) variables V4, ..., V,, satisfy
Vi = fi(U1)

Vo = f(PAz, Us)
V3 = f3(PAs, Us)

V,,; = fm(PAm, Un) (3)

where:
@ fy, f1,... are unknown deterministic functions.
@ PA; is the set of random variables that are parents of V;.

e Up, Ui, ... are random variables (" disturbances” or” errorterms” ) (not
drawn in the graph). Sometimes called exogenous variables.
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NPSEM continues

For any treatment regime g = (gj,, ..., gj,). the counterfactual variables
under g are generated by replacing the functions (f;, ..., f;,) with the
functions (gj,, ..., gj,) . where t < m. Below is an illustration. This is
called performing recursive substitution.

Vi = A(U)

VE = H(PAS, Us)

VET = 8 (PAL, Uy)

VE = fn(PAS,, Un) (4)

The superscript " g" indicates that \/,-g is a counterfactual variable (in other
words, potential outcome variable). The superscript "g+" is given to the
variables on which we intervene. A NPSEM requires (3) and (4) to hold.
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Some remarks

@ Structural: fx not only generates observed (factual variables), but also
variables in other counterfactual worlds where we have done
interventions.

o Counterfactual: The variable \/jg,j € {0,...,m} are called
counterfactual variables under treatment regime g.

@ A cause (intuitively): A variable A is a cause of a variable Y if an
intervention that specifically changes A can lead to a change in Y.
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Example: Point intervention

Let the regime g be defined by the intervention that sets V; to a.
Vit = (1)
Vit =a
V3a fé(PAgv U3)

V2 = fm(PAZ, Un) (5)

The superscript "a" indicates that V7 is a counterfactual variable (or
potential outcome variable)

where we have intervened to set a variable, here V4 (now with a
superscript a+) to a.
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Let's interpret this model, specifically

@ Only the arguments to the structural equation determine the value of
a node.
That is, the value of Vj(w) does not depend on any other unit &’ in
the population.
(No interference)

@ Suppose that a unit w has PAx(w) = pak. Then, under any
intervention g that fixes PA§ = pa, we have that Vj(w) = VE(w).
(Consistency)

@ When PA, is known, the value of other variables V' \ PA, do not
determine V. (Exclusion restriction).
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The causal inference part is an assumption about the

errors!

We must say something about the dependencies between the U's to
encode causal relations.

Definition (Independent error model)

A NPSEM wrt. a DAG G such that Uy, ..., Uy are mutually independent.

This is Pearl’s NPSEM-IE!S.

"IE" stands for independent errors.

NB: The independent error assumption is not really needed,
and can be relaxed in the more general FFRCISTG modell®

The Ugs represent all other variables that are used by nature, the decision
maker or anyone else to determine the value of V.

18 Judea Pearl. Causality: Models, Reasoning and Inference 2nd Edition. Cambridge
University Press, 2000.
Robins, “A new approach to causal inference in mortality studies with a sustained
exposure period—application to control of the healthy worker survivor effect”.
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Section 17

Causal graphs
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Let us start with some intuition

Suppose | were to explain what is going on in the experiment on heart
transplant for my friend who studied literature. | will draw intuitive

diagrams that can be formalised as causal graphs. We have previously
discussed:

@ Completely randomised experiment.
o Conditional randomised experiment.

@ Observational study with smoking.

S

L—> A—> Y t%

A—Y ~_ ~7 ~_ 7

This way of building causal stories using diagrams can be formalised by
graphs.
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Next step

@ In the previous slide, we just made these diagrams to encode
qualitative subject matter knowledge.

@ However, we shall see that the diagram can be formalised as a causal
directed acyclic graph, DAG, which encodes information about causal
and non-causal associations in a causal network: it allows us to
represent both association and causation in the same graph.
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What is the role of causal graphs?

@ Graphs help us to reason about independencies; that is, they help us reason
about whether certain exchangeability assumptions (conditional
independencies) hold.

@ This agrees with the mantra: "draw your assumptions before your

conclusions” .20

@ Graphs help us to conceptualize problems and have intuitive appeal, also for
researchers who are illiterate in math.

@ However, the intuitive graphical representations have a mathematical
justification. Therefore you can translate the intuitive subject-matter
expertise (from doctors, economists, social scientists) to precise
mathematical statements.

@ Graphs allow us to encode causation and association.

2Hernan and Robins, Causal inference: What if?
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We can now define the graph below as a causal DAG that describes the
conditional randomised trial on heart transplants,

L > A > Y

\/

where V1 = L, V2 = A, V3 =Y.

Here pags(Y) = (L, A).

The graph is complete because there is an arrow between every pair of
nodes.

Mats Stensrud Causal Thinking Autumn 2023 129 /400



What is a model

Definition (Statistical model)
A statistical model P is a collection of laws, P = {P, : n € ['}.

Here I could be an infinite dimensional space. We will typically only
restrict ourselves to the space of models with finite variance.
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Bayesian network

Definition (Bayesian network)

A Bayesian Network with respect to a DAG G with nodes

V =(Vi,..., Vp) is a statistical model for the random vector V
specifying that V' belongs to the collection of laws B satisfying the
Markovian factorisation

p(v) =[] p(vi | p3)
j=1

Here, p(x | y) = P(X =x| Y =y).

We say that the DAG G represents the Bayesian Network B.
For any law p in B, we say that p factors according to G,
or that p is represented by B.

Mats Stensrud Causal Thinking Autumn 2023 131 /400



Causal DAG

Definition (Robins EPI 207)

A causal model associated with a DAG has to satisfy the criteria below:

@ The lack of an arrow from node V; to V; can be interpreted as the absence
of a direct causal effect of V; on V; (relative to the other variables on the
graph).

@ Any variable is a cause of all its descendants. Equivalently, any variable is
caused by all its ancestors.

© All common causes, even if unmeasured, of any pair of variables on the
graph, are themselves on the graph.

@ The Causal Markov Assumption (CMA): The causal DAG is a statistical
DAG, i.e., the distribution of V factors.

© Because of the causal meaning of parents and descendants on a causal DAG,
the Causal Markov Assumption is equivalent to the statement:

o Conditional on its direct causes (i.e., parents), a variable V; is
independent of any variable it does not cause (i.e., any nondescendant).

V,
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Section 18

The next slides were not discussed explicitly in the

lectures but give some more justification and
background on graphs and NPSEM's
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Absence of common causes in the DAG (point 3)

The arguments here are analogous to the motivating example for the
simple graph with A, L, Y and smoking S.

Remember that Uy represents all other variables that determines
(causes) Vi except the parents PA.

Suppose that there exists a variable C that is a direct determinant of
Vj relative to the DAG (i.e. it does not only determine V/ through
variables in the DAG).

This means that Uy = my(C, U}) for some function my.

Suppose that C is also a direct determinant of a node j (but C is still
not in the DAG).

Thus, U;j = m;(C, Ur) for some function m;.
Thus, Uk _JL Uj.
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Factorisation of the NPSEM-IE (point 4)

Argument for Markov factorisation of causal model wrt. a DAG

m

p(v) =] p(v | paj).

j=1

Consider p(v; | vj_1) for any j € {0,..., m}. Here pa; are the parents of v;.

p(vj | vj-1)

= p(f,(PA;, Uy) = v | Vjo1 = V1)
= p(f, (Pajv Vj)_VJ|_J 1=Vj-1)

= p(f,;(paj, Uy,) = v; | f,_,(paj—1,Uy,_,) = vj—1,..., f,(pa1, Uy,) = v1)
= p(f,(PA;, Uy) = vj | PA = paj).

O

v
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No restrictions on p(v) imposed by the NPSEM-IE

The only restriction imposed on the observed law is the factorisation

m

p(v) = [T Pty | p2).

j=1

Proof.
Any further restriction must be a restriction on the form of p(v; | pa;) for
any j € {0,...,m}. But

J

and we have not put any restrictions on the marginal density of U,,. L

v
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Factorisation of the nodes V

If V follows a NPSEM-IE, then for any p(vj_1) with p(Vj_1) > 0 we have that
p(vj | vi—1) = p(v;j | paj) and therefore the joint density factorizes as

p(v) =TI p(v | pay).

This factorisation is the only restriction that the causal model implies on the law
of the observed data. )

Thus, in our example from slide 140, the observed law factorizes as
p(v) = p(l,a',y) = p(p(a | Np(y | &', 1),

which means that here we put absolutely no restrictions on the law
p(v) = P(V = v). You do not have to prove this.
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Markov equivalence classes

Definition (Markov equivalence class)

A Markov equivalence class is a set of DAGs that encode the same set of
conditional independencies.

Example of markov equivalent DAGs:

L > A > Y | < A > Y

Implication: We cannot use data alone to distinguish between causal
graphs.
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Linear structural equation example

We have not imposed any parametric assumptions so far. However, just
for the illustration, suppose we have a (partially) linear structural equation
model with two variables satisfying

A= f(Ua)
Y =a+ BA+ Uy (6)

This structural equation model implies that the individual level causal
effects is Y2=1 — Ya=0 = I

We conclude that the linear equation model relies on extremely strong
assumptions that usually will be implausible. In this course, we will not
rely on such assumptions.
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Modified non-parametric example

A different SEM M

L=1(U)
A= fA(La UA)
Y = fy(A, Uy) (7)
and the graph G,
L > A > Y

@ Encodes that, changes in L leaves Y unchanged, provided that Uy
and A remain constant.

@ Does this graph encode any restrictions on the distribution of
(L,A Y)?
We will formally study what kind of restrictions the
structural models involve
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